Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
1.
Nanoscale ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656251

RESUMO

Metal organic frameworks (MOFs) with binder-free electrodes have shown promise for portable electrochemical energy storage applications. However, their low specific capacitance and challenges associated with the attachment of active materials to the substrate constrain their practical utility. In this research, we prepared a CoNi0.5-MOF/CC electrode by in situ growth of CoNi0.5-MOF on an H2O2-pretreated carbon cloth (CC) without using any binder. It exhibits a higher specific capacitance of 1337.5 F g-1 than that of CoNi0.5-MOF (∼578 F g-1) at a current density of 1 A g-1 and an excellent rate ability of 88% specific capacitance retention at a current density of 10 A g-1 after 6000 cycles. The as-assembled flexible asymmetric solid-state supercapacitor based on the CoNi0.5-MOF/CC positive electrode and a nitrogen-doped graphene (N-Gr) negative electrode exhibits an energy density of 61.46 W h kg-1 at a power density of 1244.56 W kg-1 and holds a stable capacitance of ∼125 F g-1 at 1 A g-1 when the flexible supercapacitor is bent, showing great potential for flexible electronics application. The H2O2 is indicated to play an important role, enhancing the adhesion of CoNi0.5-MOF on CC and reducing its charge transfer resistance by functionalizing the carbon fiber during the pretreatment of the CC matrix. The results provide a great way to prepare a flexible asymmetric solid-state supercapacitor with both high power density and high energy density for practical application.

2.
Hum Vaccin Immunother ; 20(1): 2339922, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38639480

RESUMO

The growing number of Mpox cases in China has posed a challenge to public health. The prevalence of men who have sex with men behaviors among students has been consistently increasing each year in China, accompanied by a high frequency of unprotected anal sex. As crowded places, schools are highly likely to cause an Mpox outbreak among students through long-term close contact. Understanding university students' perceptions about Mpox and willingness to vaccinate play a vital role in implementing preventive measures in schools. This study aimed to assess knowledge, concerns, and vaccine acceptance toward Mpox among university students in North and Northeast China. A cross-sectional study was conducted among 3831 university students from seven universities in North and Northeast China between September 10 and September 25, 2023. This study found a relative insufficiency in Mpox knowledge among university students (71.60%), with less than half expressing concern about the Mpox outbreak (39.57%), and the majority exhibiting a positive attitude to vaccination (76.30%). Multivariate regression analysis revealed that a good knowledge level was associated with age, study discipline, education level, and a high level of concern about Mpox. Male, elderly, or highly educated participants had a low level of concern about Mpox. Participants with a high level of knowledge toward Mpox were more likely to have the vaccination willingness. This study might help governments and schools to understand students' Mpox perceptions and vaccination intentions, enabling them to implement effective measures in addressing the issue of inadequate understanding regarding Mpox among university students.


Assuntos
Varíola dos Macacos , Minorias Sexuais e de Gênero , Vacinas , Idoso , Humanos , Masculino , Feminino , Estudos Transversais , Homossexualidade Masculina , Universidades , China
3.
Cancer Res ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581448

RESUMO

Single-cell RNA-sequencing (scRNA-seq) greatly advanced the understanding of intratumoral heterogeneity by identifying distinct cancer cell subpopulations. However, translating biological differences into treatment strategies is challenging due to a lack of tools to facilitate efficient drug discovery that tackles heterogeneous tumors. Developing such approaches requires accurate prediction of drug response at the single-cell level to offer therapeutic options to specific cell subpopulations. Here, we developed a transparent computational framework (nicknamed scIDUC) to predict therapeutic efficacies on an individual-cell basis by integrating single-cell transcriptomic profiles with large, data-rich pan-cancer cell line screening datasets. This method achieved high accuracy in separating cells into their correct cellular drug response statuses. In three distinct prospective tests covering different diseases (rhabdomyosarcoma, pancreatic ductal adenocarcinoma, and castration-resistant prostate cancer), the predicted results using scIDUC were accurate and mirrored biological expectations. In the first two tests, the framework identified drugs for cell subpopulations that were resistant to standard-of-care (SOC) therapies due to intrinsic resistance or tumor microenvironmental effects, and the results showed high consistency with experimental findings from the original studies. In the third test using newly generated SOC therapy resistant cell lines, scIDUC identified efficacious drugs for the resistant line, and the predictions were validated with in vitro experiments. Together, this study demonstrates the potential of scIDUC to quickly translate scRNA-seq data into drug responses for individual cells, displaying the potential as a tool to improve treatment of heterogenous tumors.

5.
Glob Chang Biol ; 30(3): e17224, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459661

RESUMO

Wood density is a fundamental property related to tree biomechanics and hydraulic function while playing a crucial role in assessing vegetation carbon stocks by linking volumetric retrieval and a mass estimate. This study provides a high-resolution map of the global distribution of tree wood density at the 0.01° (~1 km) spatial resolution, derived from four decision trees machine learning models using a global database of 28,822 tree-level wood density measurements. An ensemble of four top-performing models combined with eight cross-validation strategies shows great consistency, providing wood density patterns with pronounced spatial heterogeneity. The global pattern shows lower wood density values in northern and northwestern Europe, Canadian forest regions and slightly higher values in Siberia forests, western United States, and southern China. In contrast, tropical regions, especially wet tropical areas, exhibit high wood density. Climatic predictors explain 49%-63% of spatial variations, followed by vegetation characteristics (25%-31%) and edaphic properties (11%-16%). Notably, leaf type (evergreen vs. deciduous) and leaf habit type (broadleaved vs. needleleaved) are the most dominant individual features among all selected predictive covariates. Wood density tends to be higher for angiosperm broadleaf trees compared to gymnosperm needleleaf trees, particularly for evergreen species. The distributions of wood density categorized by leaf types and leaf habit types have good agreement with the features observed in wood density measurements. This global map quantifying wood density distribution can help improve accurate predictions of forest carbon stocks, providing deeper insights into ecosystem functioning and carbon cycling such as forest vulnerability to hydraulic and thermal stresses in the context of future climate change.


Assuntos
Ecossistema , Madeira , Canadá , Florestas , Folhas de Planta , Carbono
6.
Transpl Immunol ; 84: 102018, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452983

RESUMO

BACKGROUND: Renal ischemia/reperfusion injury (RIRI) is an inevitable consequence of kidney transplantation and has a negative impact on both short-term and long-term graft survival. The identification of key markers in RIRI to improve the prognosis of patients would be highly advantageous. METHODS: Gene expression profile data of GSE27274 were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were analyzed using the Limma package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment of DEGs were performed. Support vector machine-recursive feature elimination and least absolute shrinkage and selection operator regression modeling were both performed to identify potential biomarkers. The GSE148420 dataset, quantitative reverse transcriptase-PCR, and western blotting results of kidney tissue samples were used to validate the bioinformatic analysis. Lastly, exploring differences between different groups through gene set enrichment analysis and using DsigDB database to identify potential therapeutic drugs targeting hub genes. RESULTS: A total of 160 upregulated and 180 downregulated DEGs were identified. Functional enrichment analysis identified significant enrichment in processes involving peroxisomes. As a subunit of Polycomb Repressive Complex 1(PRC1), chromobox 6(Cbx6) was identified as a potential biomarker with an area under the receiver operating characteristic curve of 0.875 (95% confidence interval 0.624-1.000) in the validation cohort, and it was highly expressed in the RIRI group (p < 0.05). In the high expression group Cbx6 was more enriched in the toll-like receptor signaling pathway. We predicted 15 potential drugs targeting hub genes of RIRI. CONCLUSIONS: We identified Cbx6 as a potential biomarker for RIRI and 15 potential drugs for the treatment of RIRI, which might shed a light on the treatment of RIRI.

7.
Biol Direct ; 19(1): 19, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429756

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the main subtype of esophageal cancer. Current therapeutic effect is far from satisfaction. Hence, identifying susceptible genes and potential targets is necessary for therapy of ESCC patients. METHODS: Plant homeodomain (PHD)-finger domain protein 5 A (PHF5A) expression in ESCC tissues was examined by immunohistochemistry. RNA interference was used for in vitro loss-of-function experiments. In vivo assay was performed using xenograft mice model by subcutaneous injection. Besides, microarray assay and co-immunoprecipitation experiments were used to study the potential downstream molecules of PHF5A in ESCC. The molecular mechanism between PHF5A and vascular endothelial growth factor A (VEGFA) was explored by a series of ubiquitination related assays. RESULTS: We found that PHF5A was highly expressed in ESCC tissues compared to normal tissues and that was correlated with poor prognosis of ESCC. Loss-of-function experiments revealed that PHF5A silence remarkably inhibited cell proliferation, migration, and induced apoptosis as well as cell cycle arrest. Consistently, in vivo assay demonstrated that PHF5A deficiency was able to attenuate tumor growth. Furthermore, molecular studies showed that PHF5A silencing promoted VEGFA ubiquitination by interacting with MDM2, thereby regulating VEGFA protein expression. Subsequently, in rescue experiments, our data suggested that ESCC cell viability and migration promoted by PHF5A were dependent on intact VEGFA. Finally, PI3K/AKT signaling rescue was able to alleviate shPHF5A-mediated cell apoptosis and cell cycle arrest. CONCLUSION: PHF5A is a tumor promoter in ESCC, which is dependent on VEGFA and PI3K/AKT signaling. PHF5A might serve as a potential therapeutic target for ESCC treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Ligação a RNA/genética , Transativadores/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
NPJ Precis Oncol ; 8(1): 74, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521810

RESUMO

Rab27A is a small GTPase-mediating exosome secretion, which participates in tumorigenesis of multiple cancer types. Understanding the biological role of Rab27A in non-small cell lung cancer (NSCLC) is of great importance for oncological research and clinical treatment. In this study, we investigate the function and internal mechanism of Rab27A in NSCLC. Results show that Rab27A is overexpressed in NSCLC, and regulates the tumor proliferation, migration, invasion, and cell motility in vitro and in vivo, and is negatively regulated by miR-124. Further research reveals that upregulated Rab27A can induce the production of IFNα in the medium by mediating exosome secretion. Then IFNα activates TYK2/STAT/HSPA5 signaling to promote NSCLC cell proliferation and metastasis. This process can be suppressed by TYK2 inhibitor Cerdulatinib. These results suggest that Rab27A is involved in the pathogenesis of NSCLC by regulating exosome secretion and downstream signaling, and inhibitors targeting this axis may become a promising strategy in future clinical practice.

9.
Heliyon ; 10(6): e27530, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38501018

RESUMO

Background: Ulcerative colitis (UC) is a chronic non-specific inflammatory disease with intestinal tract as the main site. The pathogenic of UC has not yet been clarified, and multiple mechanisms can lead to the pathogenesis of UC. Traditional Chinese medicine (TCM) offers an opportunity for UC treatment. TCM has become the preferred treatment for UC with characteristics of multiple targets, multiple pathways and high safety. This review attempted to summarize the characteristics of TCM (compound prescriptions, single Chinese herbs, and active ingredients) for UC treatment and discussed their pathogenesis based on analyzing the UC-related gut microbiota, signaling pathway and cytokine. In order to provide more systematic and diverse reference for TCM in the prevention and treatment of UC, and provide theoretical reference for clinical treatment of UC. Materials and methods: The information was acquired from different databases, including Web of Science, PubMed, CNKI, Wanfang, and VIP databases. We then focused on the recent research progress in UC treatment by TCM. Finally, the deficiencies and future perspectives are proposed. Results: Modern pharmacological studies have shown that the compound prescriptions (strengthening spleen, clearing heat and removing dampness, clearing heat and removing toxin), single Chinese herbs (replenishing Qi, clearing heat, tonifying blood, etc.), and active ingredients (alkaloids, polysaccharides, flavonoids, polyphenols, terpenes, etc.) have an efficiency in UC treatment by regulating gut microbiota, signaling pathway and cytokine. Conclusions: TCM can achieve its purpose of UC prevention and treatment by acting in multiple ways, and TCM deserves further research and development in this field.

10.
J Colloid Interface Sci ; 662: 377-390, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359502

RESUMO

Developing highly efficient photocatalysts based on conjugated microporous polymers (CMPs) are often impeded by the intrinsically large exciton binding energy and sluggish charge transfer kinetics that result from their vulnerable driving force. Herein, a family of pyrene-based nitrogen-implanted CMPs were constructed, where the nitrogen gradient was regulated. Accordingly, the built-in electric field endowed by the nitrogen gradient dramatically accelerates the dissociation of exciton into free carriers, thereby enhancing charge separation efficiency. As a result, PyCMP-3N generated by polymerization of 1,3,6,8-tetrakis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrene and 2,4,6-tris(4-bromophenyl)-1,3,5-triazine featured an optimized built-in electric field and exhibited the highest photocatalytic removal efficiency of uranium (VI) (99.5 %). Our proposed strategy not only provides inspiration for constructing the built-in electric field by controlling nitrogen concentration gradients, but also offers an in-depth understanding the crucial role of built-in electric field in exciton dissociation and charge transfer, efficiently promoting CMPs photocatalysis.

11.
ACS Chem Biol ; 19(3): 654-659, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331720

RESUMO

Extracellular soluble proteins are key agents in the development of various diseases. However, strategies to remove therapeutically relevant extracellular targets are still scarce. Here, we establish dendronized DNA chimera (DENTAC) as an efficient approach for targeted degradation of the extracellular protein of interest (ePOI). DENTAC consists of a DNA dendron against cell-surface scavenger receptors (SRs), a protein ligand, and a connecting linker, which harnesses SRs as a lysosome-trafficking receptor to mediate the lysosomal degradation of the ePOI. We interrogate and optimize structure-activity relationships of DENTAC. Using neutravidin as a model ePOI, we show that both branch number and DNA length in the DNA dendron are important determinants for efficient lysosomal delivery and degradation of the protein. We demonstrate three branches and 10 nucleotide-length polythymidine as the optimal DNA dendron components to construct DENTAC. We further exemplify the anticancer application of DENTAC by targeting matrix metalloproteinase-9 (MMP-9), where we find linker property as another factor important for DENTAC performance. We reveal that MMP-9-targeting DENTAC effectively restrain cancer cell proliferation, migration, and invasion. This study thus provides a potent strategy to delete extracellular proteins that are commonly difficult to target.


Assuntos
Dendrímeros , Metaloproteinase 9 da Matriz , Proteólise , Dendrímeros/farmacologia , Proliferação de Células , DNA
12.
Vaccine X ; 16: 100434, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38304877

RESUMO

Background: Mpox, one of the most serious threats to global health, is now being seen in small but rising numbers in Beijing, China. Our study aimed to investigate healthcare workers' (HCWs) knowledge of Mpox and to explore reasons associated with their hesitancy to vaccinate against Mpox in Beijing, China. Methods: A cross-sectional study was conducted among HCWs in Beijing from July 24 to August 2, 2023, through an online questionnaire. Participants answered questions about sociodemographic characteristics, Mpox information sources, Mpox knowledge, perception of vaccines, and attitudes toward Mpox vaccination. We used Chi-squared test to compare difference in Mpox vaccination hesitancy between different groups. Multivariable logistic regression models were applied to analyze correlates of vaccination hesitancy among HCWs. Results: A total of 2331 HCWs completed the questionnaire, with an effective response rate of 92.45 % (2155/2331). Most of the HCWs in this study worked at tertiary hospitals (89.65 %), with a mean age of 36.69 ± 9.08 years. Among the 2155 participants, 52.99 % had over ten years of working experience, and 16.66 % were from high-risk departments relevant to Mpox treatment. Approximately 84.41 % knew about Mpox before this study, 80.79 % exhibited a high level of knowledge about Mpox, whereas 42.37 % were hesitant to be vaccinated against Mpox. Moreover, the hesitancy rate of HCWs in high-risk departments (47.91 %) was higher than in lower-risk departments (41.26 %). Higher educational level (aOR = 1.75, 95 %CI: 1.17-2.62), longer working years (1.71, 1.32-2.22), working at high-risk departments (1.34, 1.05-1.71), and lower level of knowledge about Mpox (1.78, 1.13-2.85) appeared as the most significant determinants of Mpox vaccination hesitancy among HCWs who knew about Mpox. For the HCWs who did not know about Mpox, longer working years (1.96, 1.02-3.78) were significant factors associated with their hesitancy. The predominant reason for hesitancy toward Mpox vaccination among HCWs encompassed apprehensions about vaccine side effects. Conclusion: HCWs had good knowledge of Mpox, whereas their Mpox vaccination hesitancy was also relatively high in Beijing, China. Increasing HCWs' vaccination confidence and knowledge level about Mpox, especially for those working in high-risk departments, may be an essential way of reducing their hesitancy.

13.
J Cancer Sci Clin Ther ; 7(4): 253-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344217

RESUMO

We recently reported a computational method (IDACombo) designed to predict the efficacy of cancer drug combinations using monotherapy response data and the assumptions of independent drug action. Given the strong agreement between IDACombo predictions and measured drug combination efficacy in vitro and in clinical trials, we believe IDACombo can be of immediate use to researchers who are working to develop novel drug combinations. While we previously released our method as an R package, we have now created an R Shiny application to allow researchers without programming experience to easily utilize this method. The app provides a graphical interface which enables users to easily generate efficacy predictions with IDACombo using provided data from several high-throughput cell line screens or using custom, user-provided data.

14.
J Am Geriatr Soc ; 72(4): 1122-1135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38319006

RESUMO

BACKGROUND: Sexual function is an important yet understudied aspect of overall health and well-being in older adults. We aimed to examine sexual function and its correlates among people 50 years and older in China. METHODS: We enrolled people aged 50 years and older recruited from four regions in China between September 2021 and July 2022 in a multicenter cross-sectional study. Data were collected through an investigator-administered questionnaire about demographic characteristics, health characteristics, and sexual function status. Logistic regression was used to assess correlates of lower sexual function (the highest quintile of the sex-specific population distribution of Natsal-SF scores [i.e., lower functioning compared with the remaining]). RESULTS: A total of 465 women and 832 men who were sexually active in the past year were included in the analysis (mean age: 60.4 ± 7.2) [Correction added after first online publication on 12 Feb 2024. The word "years" has been changed to "year" in this sentence.]. Over a quarter of all participants were dissatisfied with their sex life. Notably, 92 women and 167 men were categorized as having a lower sexual function. Age (in men only), living in urban areas, general health status, being underweight or overweight (in men only), and having depressive symptoms were associated with lower sexual function. Among all participants, 43.1% of men and 54.0% of women experienced sexual response problems lasting 3 months or more. Less than one-third of all participants had sought help or advice for sex life in the past year. CONCLUSIONS: Sexual dysfunction and sexual dissatisfaction are prevalent among older adults in China and are associated with self-assessed poor health. More efforts are needed to better understand sexual health needs and tailor service provision.


Assuntos
Comportamento Sexual , Disfunções Sexuais Fisiológicas , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Inquéritos e Questionários , China/epidemiologia
15.
Int J Biol Macromol ; 262(Pt 1): 129974, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331068

RESUMO

Mitochondria in breast cancer play a critical role in survival and adaptation to dynamic environments. Thus, targeting mitochondria emerges as a promising therapeutic strategy for breast cancer. However, the adaptive unfolded protein response in mitochondria (UPRmt) due to mitochondrial unspecific distribution might contribute to diminished therapeutic outcomes. Herein, mitochondrial targeting liposome agents (CTPP-Lipid) are constructed and adopted for delivering the copper ion (CuET-DSF), which is especially sensitive for mitochondria-abundant breast tumors. In brief, the CTPP-Lipid@CuET achieves the goal of Cu2+ overloading by mitochondria targeting delivery. This rapidly increases ROS production, disrupts mitochondrial structure, and avoids the adaptive UPRmt formation, finally leading to apoptosis of breast cancer cells. In general, the Cu2+ overloading at mitochondria by CTPP-Lipid@CuET is a potential strategy for antitumor therapy, providing new insights into breast tumor therapy.


Assuntos
Neoplasias da Mama , Lipossomos , Humanos , Feminino , Cobre/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resposta a Proteínas não Dobradas , Lipídeos
16.
Pharmacol Ther ; 256: 108610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367868

RESUMO

Accumulating evidence indicates that epigenetic events undergo deregulation in various cancer types, playing crucial roles in tumor development. Among the epigenetic factors involved in the epigenetic remodeling of chromatin, the chromodomain helicase DNA-binding protein (CHD) family frequently exhibits gain- or loss-of-function mutations in distinct cancer types. Therefore, targeting CHD remodelers holds the potential for antitumor treatment. In this review, we discuss epigenetic regulations of cancer development. We emphasize proteins in the CHD family, delving deeply into the intricate mechanisms governing their functions. Additionally, we provide an overview of current therapeutic strategies targeting CHD family members in preclinical trials. We further discuss the promising approaches that have demonstrated early signs of success in cancer treatment.


Assuntos
Cromatina , Neoplasias , Humanos , DNA Helicases/genética , DNA Helicases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Proteínas de Ligação a DNA/metabolismo , Montagem e Desmontagem da Cromatina , Epigênese Genética
17.
Nanoscale Adv ; 6(5): 1423-1435, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38419880

RESUMO

Drug delivery systems based on nanoparticles still face challenges of low efficacy and an inability to track treatment effects in tumor therapy due to biological barriers. This limitation hinders clinicians' ability to determine treatment effects and proper drug dosages, thus, ultimately impeding the further application and transformation of nanoplatforms. To address this challenge, an all-in-one nanoplatform for therapy and imaging is proposed. The nanoplatform is constructed by using nanoparticles through the co-encapsulation of the photothermal therapeutic agent IR780, the passively targeted drug OA@Fe3O4, and the chemotherapeutic drug paclitaxel. Under the guidance of magnetic navigation, the nanoparticles can enhance local enrichment of the drug, while the luminescence properties of IR780 enable drug tracking at the same time. Remarkably, the nanoparticles exhibit improved photothermal-chemotherapy synergy under magnetic targeting guidance, demonstrating antitumor effects in both in vitro and in vivo experiments. It is demonstrated that the use of these polymeric nanoparticles has significant potential for future biomedical applications and clinical decisions.

18.
Adv Mater ; : e2311733, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38339920

RESUMO

Immunotherapy has received widespread attention for its effective and long-term tumor-eliminating ability. However, for immunogenic "cold" tumors, such as prostate cancer (PCa), the low immunogenicity of the tumor itself is a serious obstacle to efficacy. Here, this work reports a strategy to enhance PCa immunogenicity by triggering cascade self-enhanced ferroptosis in tumor cells, turning the tumor from "cold" to "hot". This work develops a transformable self-assembled peptide TEP-FFG-CRApY with alkaline phosphatase (ALP) responsiveness and glutathione peroxidase 4 (GPX4) protein targeting. TEP-FFG-CRApY self-assembles into nanoparticles under aqueous conditions and transforms into nanofibers in response to ALP during endosome/lysosome uptake into tumor cells, promoting lysosomal membrane permeabilization (LMP). On the one hand, the released TEP-FFG-CRAY nanofibers target GPX4 and selectively degrade the GPX4 protein under the light irradiation, inducing ferroptosis; on the other hand, the large amount of leaked Fe2+ further cascade to amplify the ferroptosis through the Fenton reaction. TEP-FFG-CRApY-induced immunogenic ferroptosis improves tumor cell immunogenicity by promoting the maturation of dendritic cells (DCs) and increasing intratumor T-cell infiltration. More importantly, recovered T cells further enhance ferroptosis by secreting large amounts of interferon-gamma (IFN-γ). This work provides a novel strategy for the molecular design of synergistic molecularly targeted therapy for immunogenic "cold" tumors.

19.
Adv Mater ; : e2314021, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359076

RESUMO

Photoactivatable molecules, with high-precision spatialtemporal control, have largely promoted bioimaging and phototherapy applications of fluorescent dyes. Here, the first photoactivatable sensor (BI) is described that can be triggered by broad excitation light (405-660 nm), which further undergoes intersystem crossing and H-atom transfer processes to forming superoxide anion radicals (O2 -• ) and carbon radicals. Particularly, the photoinduced gain of carbon-centered radicals (BI•) allows for radical-radical coupling to afford the combined crosslink product (BI─BI), which would be oxidized in the presence of O2 -• to produce an extended conjugate system with near infrared emission (820 nm). Besides, the photochemically generated product (Cy─BI) possesses ultra-high photothermal conversion efficiency up to 90.9%, which optimized phototherapy potential. What's more, Western Blot assay reveals that both BI and the photoproduct Cy─BI can efficiently inhibit the expression of CHK1, and the irradiation of BI and Cy─BI further induces apoptosis and ultimately enhances the phototherapeutic effects. Thus, the combination of cell cycle block inducing apoptosis, photodynamic therapy and photothermal therapy treatments significantly suppress solid tumor in vivo antitumor efficacy explorations. This is a novel finding in developing photoactivatable molecules, as well as the broad applicability of photoimaging and phototherapy in tumor-related areas.

20.
Breast Cancer Res ; 26(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167446

RESUMO

BACKGROUND: Despite radiotherapy ability to significantly improve treatment outcomes and survival in triple-negative breast cancer (TNBC) patients, acquired resistance to radiotherapy poses a serious clinical challenge. Protein disulfide isomerase exists in endoplasmic reticulum and plays an important role in promoting protein folding and post-translational modification. However, little is known about the role of protein disulfide isomerase family member 4 (PDIA4) in TNBC, especially in the context of radiotherapy resistance. METHODS: We detected the presence of PDIA4 in TNBC tissues and paracancerous tissues, then examined the proliferation and apoptosis of TNBC cells with/without radiotherapy. As part of the validation process, xenograft tumor mouse model was used. Mass spectrometry and western blot analysis were used to identify PDIA4-mediated molecular signaling pathway. RESULTS: Based on paired clinical specimens of TNBC patients, we found that PDIA4 expression was significantly higher in tumor tissues compared to adjacent normal tissues. In vitro, PDIA4 knockdown not only increased apoptosis of tumor cells with/without radiotherapy, but also decreased the ability of proliferation. In contrast, overexpression of PDIA4 induced the opposite effects on apoptosis and proliferation. According to Co-IP/MS results, PDIA4 prevented Tax1 binding protein 1 (TAX1BP1) degradation by binding to TAX1BP1, which inhibited c-Jun N-terminal kinase (JNK) activation. Moreover, PDIA4 knockdown suppressed tumor growth xenograft model in vivo, which was accompanied by an increase in apoptosis and promoted tumor growth inhibition after radiotherapy. CONCLUSIONS: The results of this study indicate that PDIA4 is an oncoprotein that promotes TNBC progression, and targeted therapy may represent a new and effective anti-tumor strategy, especially for patients with radiotherapy resistance.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Carcinogênese , Transformação Celular Neoplásica , Família , Linhagem Celular Tumoral , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...